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Tensionless structure of a glassy phase
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We study a class of homogeneous finite-dimensional Ising models which were recently shown to exhibit
glassy properties. Monte Carlo simulations of a particular three-dimensional model in this class show that the
glassy phase obtained under slow cooling is dominated by large-scale excitations whoseEgsesadgs with
their sizel asE,;~1® with ®~1.33(20). Simulations suggest that in another model of this class, namely the
four-spin model, energy is concentrated mainly in linear defects, making the domain walls tensionless in this
case also. Two-dimensional variants of these models are trivial and most likely the energy of excitations scales
with the exponen® =1.
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Recently the problem of the structure of the glassy phasexcitations whose energy increases faster thérf but
in spin glasses has attracted considerable attention. The mastower thanl®~1. It is also likely that the exponeré that
thrust of research has been to establish whether the lowdescribes the size dependence of the energy of excitations
temperature phase is described by the so-called dropléakes some nontrivial values for these models. For the mod-
model[1] or by the replica symmetry breakirf@SB) theory  els of conventional glasses considered here the problem of
of Parisi[2]. An important difference between these theoriesenergetics of large-scale excitations is computationally much
concerns the energ¥, of large-scale excitations, which more tractable than for spin glass models. It is hoped that the
should scale with their sizeasE,~1® where®>0 for the  results obtained for these models will provide some insight
droplet model but with® =0 for the RSB theory. The most into other glassy systems too. In addition, our results can be
interesting situation arises in the three-dimensional casélsed to verify some earlier claims concerning the nature of
where it seems that a combination of these two approaches g€ glassy transition in some of these modé#.
needed to describe the glassy phase corrésily The class of models that we examine in this paper is de-
Of course, the problem of the structure of the glassy phaséned by the following Hamiltonian:
is not restricted to spin glasses. Disordered, out of equilib-
rium, slow dynamics structures appear in superconducting Kk (1—K)
compounds, polymers, and granular matter. However, theséi=—2k >, S S+ > >SS+ — > SSSS,
systems are very complex and modeling them seems to be (L) (L0 3.k1]
more difficult than understanding spin glasses. Conventional @)
glasses are also very compl¢f]. Nevertheless, recently
relatively simple models have been proposed which exhibitvhere the summations are over nearest neighbors, next-
an encouraging number of glassy properfes9]. All these  nearest neighbors, and elementary plagquettes, respectively.
models are spin models that do not contain quenched disoModel (1) has the interesting property that the energy of
der as in the case of spin glasses and glassiness is dynamgrtain excitations of sizeis proportional tol~2, whereas
cally generated. An absence of quenched disorder has impdypically the energy of an excitation for a standard nearest
tant implications. First, the ground state and sometimes eveneighbor Ising model is proportional to its surfacel¢ ).
the structure of excitations are known exactly. Let us emphafhis property has been used to construct a class of random
size that for the three-dimensional spin glasses the problersurface theories based on mod#l [11].
of finding the ground state is extremely diffic@ftonpolyno- Recently, it was shown that fat=3 model(1) has slow
mial complete and is one of the main difficulties in numeri- dynamics at low temperatuf@0]. When a high-temperature
cal approaches to spin glasses. Secondly, for models withosample is quenched to low temperature the excess energy
quenched disorder there is no need to average over differedE=E(t) —E.y, whereE., is the equilibrium energy, de-
realizations of this disorder, which is yet another computacays with timet much more slowly thart™*2, which is a
tional advantage of such models. typical decay rate for Ising models with nonconservative dy-
The objective of the present paper is to examine the nanamics[12]. It turns out that th&k=0 (pure four-spin inter-
ture of the glassy phase in certain nondisordered Ising modaction case is of particular interest. This is because in this
els. Simple heuristic arguments show that these modelsase the model also has some other properties typical of con-
might have large-scale excitations of energy that scale witlventional glasses, such as strong metastaljityand small
their size ag?" 2, i.e., slower than the surface-(“" ). The  cooling-rate effect§13]. Moreover, certain time dependent
guestion is whether such states appear in, or maybe eveamwrrelation functions, such as those describing aging, also
dominate, the glassy phase. To examine this problem wbkehave similarly to real glassy systefid]. Although a slow
have performed Monte Carlo simulations of the models andlecay of SE is an indication of slow dynamics, it would be
our results suggest that the glassy phase is dominated lgesirable to relate this decay to the increase of a character-
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istic length scald. (As we will see, such a relation will give -05 . - . . .

some information about the energetics of excitations of the r 7

glassy phaseg. L5 .
2 -

For ordinary Ising models simple arguments, based on the
fact that the energy of excitation of sizecales as its surface  1og,,(357° [

(E,~1971), can be used to obtain the relation togio(x ), [ ]
35 - -
1 4r 1
SE~ I— (2) -4.5 -
-5 —
However, since for modéll) the energy of excitations might s ” 35 3 25 2 15
increase more slowly than their surface area, the reldfpn logio(r)

is no longer obvious. Assuming that in the glassy phase the
dominant excitations are indeed these low-energy excitations_
(with E;~1972), the following relation should holf10,13: X

FIG. 1. The excess energyE (+, d=3, andA, d=2), and
1 (x, d=3, andx, d=2) as a function of the cooling rate

1 SE~r*X1, 7)
SE~—. (3) o
2 where x; =0.50(5) [13]. Similarly, we expect thajy also

increases as a power pf
Let us note that the assumption that the glassy phase is com-

posed of low-energy excitations implies that at the glassy x~r %, (8

transition domain walls lose their surface tension. Such an

identification might be of more general validity and could belnverting Eq.(8) and using Eq(5) we obtainr ~1~%*2 and

used as a criterion to locate the glassy transition. from Eq. (7) we haveSE~|~%1/%2, Finally, comparing the
Is it possible to verify which of the relatiorf®) and(3) is  last relation with Eq(4) we obtain

true in our model? First, let us note th&@) and(3) are two

extremal cases corresponding to the largest and the smallest O =d(1—X1/X3). 9

excitation energy per surface area, respectively. It is thus ] ) )

possible that neither of them is true and in the glassy phase 10 estimate® we performed Monte Carlo simulations of

an intermediate relation holds. To consider a more generdnodel (1) for k=2 and using a Metropolis algorithifi6]

situation let us assume that the energy of excitations scales ¥4th random update. Simulations were made for the system

1. In a lattice of linear size the number of excitations of Siz€ up toL=70 and we have checked that this is sufficient

sizel scales asl(/I) and the total excess energy scales ad© obtain basically size independent results. For each cooling

(L/1)91°. Thus, the excess energy per spiB scales as rater we made around 100 independent runs which were
used to calculatéE and y. The starting temperature was
SE~1974, (4) =2.8, which fork=2 is above the critical temperature,

which in this case i9.~2.35[10].
To determine® we need a second, independent measure- The results of our simulations are shown in Fig. 1. The
ment of the characteristic lengthlt is already known that  relatively good linearity of our data confirm the power-law
can also be obtained from the fluctuations of the order pabehavior (7) and (8). From these data we estimatg

rameter using the relatioi5] =0.50(5),x,=0.90(5), and using Eg.(9) we obtain ®
=1.33(20). Such an estimate @ shows that neither Eq.
1/1 2 d (2), which corresponds t® =2, nor Eq.(3), which corre-
X= F F( 2 Si) =1% ) sponds ta® =1, is correct. Instead, we have an intermediate

possibility with a noninteger value dd. (Marginally, our

where the magnetization is taken as a corresponding ord&stimation can be consistent with=1.) Let us note that
characteristic length as E¢4) (up to the order of magni- [17]- . o

tude, we use the following procedure. We continuously cool —For comparison, in Fig. 1 we also present results of our
the high-temperature sample down to zero temperature. Iimulations for the two-dimensionaquare latticeversion

this process the temperature changes linearly with simulatioff model (1) with k=2 (in this caseT.=0). Simulations
time, were performed for system sizes uplte- 1000. From these

data we estimatex;=0.465), x,=0.955), andthus ©
T(t)=Ty—rt, (6)  =1.05(10). It is likely that in this cas® =1, which would
indicate the trivial nature of domain walls with energy pro-
wherer is the cooling rate. Then, for the zero-temperatureportional to their perimeter, the typical two-dimensional
configuration we calculatéE and y. Previous Monte Carlo Ising model behavior.
simulations suggest that for modél) and k=2 the zero- Although for k=2 model (1) has slow low-temperature
temperature energy exce8k decreases with as dynamics, it does not display a genuine glassy transition. As
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FIG. 2. The distribution of unsatisfied plaguettes in the zero-

temperature glassy phase. Simulations were made for the syster 084 ]
sizeL=100. (Only a portion of the system is showr.et us note

. - . 0.82 . .
that although the cooling for the=2 case is faster it seems to
create larger domains. It was already suggested that for thekcase 0.8 . . . . .
=0 the model should order much more slowly than Ker2 [10]. 0 0.0002 00004 0.0006 00008 0001  0.0012

I

we already noted, to model glassy transitions one should £ 3 The fractiorp of unsatisfied plaquettes that are located
really study the case ok=0. However, in this case the j, jinear segments as a function of the cooling ratéor k=0

above method encounters some difficulties since the domains.y angk=2 (x).

of random quench are not only of ferromagnetic type as in

the case ofk=2, but also antiferromagnetic and even of expectations we measured the ratp of unsatisfied

some mixed typesgsee[10] for some discussion For k=0 plaquettes that belon_g to linear segments compared to the

Eq. (5) cannot be used and thus the expon@ntannot be total numbgr of unsansfled.plaque'tt[dssa]. The results, pre-

determined using the above method. sentgd in Fig. 3, ghow tthtllndeed increases for deqreasmg
To get some insight into the=0 case we instead looked - It IS @lso possible that in the limit—0 the fractionp

at the distribution of unsatisfied plaquet{d$§] in the glassy —1. I_‘Et us note that the glassy state obtained in such a limit

phasei.e., plaquettes contributing energy above the grouncfonSt'tUtes an ideal gla$&0] and the present results might

statd. The random high-temperature sample was sIowaShed some light on this, so far hypothetical, state of matter.

cooled down to zero temperature. Then for the final conﬁgu—In particular, they suggest that in the ideal glass slow cooling

ration we located unsatisfied plaquettes, and their spatial did€MOVves energy-rich spots and leaves only low-energy

tribution is shown in Fig. 2. For comparison we also presenfexc'tat'ons' _ : .
similar calculations for thé&k=2 case. One can see that in In conclusion, we studied the glassy phase of the gonihe-

both cases energy is concentrated in linear segmentsk Fordric model. Our results show that the energy of excitations in
=2 this is in agreement with our estimatigh<<2 as for this phas_e scales 48 Wi.th ®<d._l'.ThiS confirms ea_rlier

®=2 energy would be localized on two-dimensional Sur_expectatlons that domain walls in this model are tensionless.
faces. Although fok=0 we cannot estimat®, the linear >Mnce thek=0 case seems to have a number of properties

stuctures in Fig. 2 strongly suggests that in this case alsyﬁ'iﬁl oihc.)rdmanl/t g:assr?s, it would ble de§|rabl? to tcheck
® <2 and the glassy phase is composed of tensionless gginether this result aiso has some analogy In real systems.

main walls. This work was partially supported by the KBN Grant No.
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[1] D.S. Fisher and D.A. Huse, Phys. Rev.3B, 386(1988. Johnstonjbid. 33, 4451(2000.

[2] G. Parisi, Phys. Rev. Lett3, 1754(1979; 50, 1946(1983. [7] M.E.J. Newman and C. Moore, Phys. Rev6& 5068(1999.

[3] F. Krzakala and O.C. Martin, Phys. Rev. L&t 3013(2000); [8] S. Franz, M. Mezard, F. Ricci-Tersenghi, M. Weigt, and R.
M. Pallasini and A.P. Youngbid. 85, 3017(2000. Zecchina, e-print cond-mat/0103026.

[4] W. Gaze, inLiquid, Freezing and Glass TransitipfProceed- [9] J. Bernasconi, J. Phy&rance 48, 559(1987); J.P. Bouchaud
ings of the Les Houches Summer School of Theoretical Phys- and M. Meard, J. Phys. ¥, 1109 (1994; E. Marinari, G.
ics, Les Houches, 1989, edited by J.P. Hansen, D. Levesque, Parisi, and F. Ritort, J. Phys. 27, 7647 (1994).
and J. Zinn-JustinNorth-Holland, Amsterdam, 1991 C.A. [10] A. Lipowski, D. Johnston, and D. Espriu, Phys. Rev6E

Angell, Science267, 1924 (1995; F.H. Stillinger, ibid. 267, 3404 (2000.
1935(1995. [11] G.K. Sawvidy and F.J. Wegner, Nucl. Phys4B3, 605(1994);
[5] 3.D. Shore, M. Holzer, and J.P. Sethna, Phys. Rew6B D. Espriu, M. Baig, D.A. Johnston, and R.P.K.C. Malmini, J.
11 376(1992. Phys. A30, 405(1997; R.V. Ambartzumian, G.S. Sukiasian,
[6] A. Lipowski, J. Phys. A30, 7365(1997); A. Lipowski and D. G.K. Sawvidy, and K.G. Savvidy, Phys. Lett. &5 99 (1992.

017103-3



BRIEF REPORTS PHYSICAL REVIEW E 65 017103

[12] A.J. Bray, Adv. Phys43, 357 (1994. [18] Fork=0 a plaquette is called unsatisfied if the product of spin

[13] A. Lipowski and D. Johnston, Phys. Rev.ad, 6375(2000. variables on this plaquettes equals 1. Let us note thakfor

[14] M.R. Swift, H. Bokil, R.D.M. Travasso, and A.J. Bray, Phys. =0 the coupling in mode(l) is positive while that used, e.g.,
Rev. B62, 11 494(2000. in [6,13] is negative. However, using a simple transformation,

[15] A. Sadiqg and K. Binder, J. Stat. Phy&5, 517 (1984. the two cases can be made equivalent.

[16] See, e.g., K. Binder, inApplications of the Monte Carlo [19] A plaquette separates two elementary cubes. This plaquette
Method in Statistical Physic®dited by K. Binder(Springer, belongs to the linear segment when each of the adjacent cubes
Berlin, 19849. contains only two unsatisfied plaquettgincluding the

[17] To check our procedure we performed simulations also for the  plaquette under consideratjon
nearest neighbor three-dimensional Ising model. Rough estif20] J. Jakle, Rep. Prog. Phy€9, 171(1986. The idea that in the
mations ofx; (~0.5) andx, (~1.5) based on these simula- four-spin model the “almost ideal” glassy state might exist
tions suggest tha® =2, which is the expected result. was discussed ifil3,14].

017103-4



