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Tensionless structure of a glassy phase
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We study a class of homogeneous finite-dimensional Ising models which were recently shown to exhibit
glassy properties. Monte Carlo simulations of a particular three-dimensional model in this class show that the
glassy phase obtained under slow cooling is dominated by large-scale excitations whose energyEl scales with
their sizel asEl; l Q with Q;1.33(20). Simulations suggest that in another model of this class, namely the
four-spin model, energy is concentrated mainly in linear defects, making the domain walls tensionless in this
case also. Two-dimensional variants of these models are trivial and most likely the energy of excitations scales
with the exponentQ51.
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Recently the problem of the structure of the glassy ph
in spin glasses has attracted considerable attention. The
thrust of research has been to establish whether the
temperature phase is described by the so-called dro
model@1# or by the replica symmetry breaking~RSB! theory
of Parisi@2#. An important difference between these theor
concerns the energyEl of large-scale excitations, whic
should scale with their sizel asEl; l Q whereQ.0 for the
droplet model but withQ50 for the RSB theory. The mos
interesting situation arises in the three-dimensional ca
where it seems that a combination of these two approach
needed to describe the glassy phase correctly@3#.

Of course, the problem of the structure of the glassy ph
is not restricted to spin glasses. Disordered, out of equ
rium, slow dynamics structures appear in superconduc
compounds, polymers, and granular matter. However, th
systems are very complex and modeling them seems t
more difficult than understanding spin glasses. Conventio
glasses are also very complex@4#. Nevertheless, recentl
relatively simple models have been proposed which exh
an encouraging number of glassy properties@5–9#. All these
models are spin models that do not contain quenched d
der as in the case of spin glasses and glassiness is dyn
cally generated. An absence of quenched disorder has im
tant implications. First, the ground state and sometimes e
the structure of excitations are known exactly. Let us emp
size that for the three-dimensional spin glasses the prob
of finding the ground state is extremely difficult~nonpolyno-
mial complete! and is one of the main difficulties in numer
cal approaches to spin glasses. Secondly, for models wit
quenched disorder there is no need to average over diffe
realizations of this disorder, which is yet another compu
tional advantage of such models.

The objective of the present paper is to examine the
ture of the glassy phase in certain nondisordered Ising m
els. Simple heuristic arguments show that these mo
might have large-scale excitations of energy that scale w
their size asl d22, i.e., slower than the surface (; l d21). The
question is whether such states appear in, or maybe e
dominate, the glassy phase. To examine this problem
have performed Monte Carlo simulations of the models a
our results suggest that the glassy phase is dominate
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excitations whose energy increases faster thanl d22 but
slower thanl d21. It is also likely that the exponentQ that
describes the size dependence of the energy of excitat
takes some nontrivial values for these models. For the m
els of conventional glasses considered here the problem
energetics of large-scale excitations is computationally m
more tractable than for spin glass models. It is hoped that
results obtained for these models will provide some insi
into other glassy systems too. In addition, our results can
used to verify some earlier claims concerning the nature
the glassy transition in some of these models@10#.

The class of models that we examine in this paper is
fined by the following Hamiltonian:

H522k(
^ i , j &

SiSj1
k

2 (
^^ i , j &&

SiSj1
~12k!

2 (
[ i , j ,k,l ]

SiSjSkSl ,

~1!

where the summations are over nearest neighbors, n
nearest neighbors, and elementary plaquettes, respect
Model ~1! has the interesting property that the energy
certain excitations of sizel is proportional tol d22, whereas
typically the energy of an excitation for a standard near
neighbor Ising model is proportional to its surface (; l d21).
This property has been used to construct a class of ran
surface theories based on model~1! @11#.

Recently, it was shown that ford53 model~1! has slow
dynamics at low temperature@10#. When a high-temperature
sample is quenched to low temperature the excess en
dE5E(t)2Eeq , whereEeq is the equilibrium energy, de
cays with timet much more slowly thant21/2, which is a
typical decay rate for Ising models with nonconservative d
namics@12#. It turns out that thek50 ~pure four-spin inter-
action! case is of particular interest. This is because in t
case the model also has some other properties typical of
ventional glasses, such as strong metastability@6# and small
cooling-rate effects@13#. Moreover, certain time dependen
correlation functions, such as those describing aging, a
behave similarly to real glassy systems@14#. Although a slow
decay ofdE is an indication of slow dynamics, it would b
desirable to relate this decay to the increase of a chara
©2001 The American Physical Society03-1
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BRIEF REPORTS PHYSICAL REVIEW E 65 017103
istic length scalel. ~As we will see, such a relation will give
some information about the energetics of excitations of
glassy phase.!

For ordinary Ising models simple arguments, based on
fact that the energy of excitation of sizel scales as its surfac
(El; l d21), can be used to obtain the relation

dE;
1

l
. ~2!

However, since for model~1! the energy of excitations migh
increase more slowly than their surface area, the relation~2!
is no longer obvious. Assuming that in the glassy phase
dominant excitations are indeed these low-energy excitat
~with El; l d22), the following relation should hold@10,13#:

dE;
1

l 2
. ~3!

Let us note that the assumption that the glassy phase is c
posed of low-energy excitations implies that at the gla
transition domain walls lose their surface tension. Such
identification might be of more general validity and could
used as a criterion to locate the glassy transition.

Is it possible to verify which of the relations~2! and~3! is
true in our model? First, let us note that~2! and ~3! are two
extremal cases corresponding to the largest and the sma
excitation energy per surface area, respectively. It is t
possible that neither of them is true and in the glassy ph
an intermediate relation holds. To consider a more gen
situation let us assume that the energy of excitations scale
l Q. In a lattice of linear sizeL the number of excitations o
size l scales as (L/ l )d and the total excess energy scales
(L/ l )dl Q. Thus, the excess energy per spindE scales as

dE; l Q2d. ~4!

To determineQ we need a second, independent measu
ment of the characteristic lengthl. It is already known thatl
can also be obtained from the fluctuations of the order
rameter using the relation@15#

x5
1

Ld K 1

Ld S (
i

Si D 2L 5 l d, ~5!

where the magnetization is taken as a corresponding o
parameter. Assuming that relation~5! determines the sam
characteristic length as Eq.~4! ~up to the order of magni-
tude!, we use the following procedure. We continuously co
the high-temperature sample down to zero temperature
this process the temperature changes linearly with simula
time,

T~ t !5T02rt , ~6!

where r is the cooling rate. Then, for the zero-temperatu
configuration we calculatedE andx. Previous Monte Carlo
simulations suggest that for model~1! and k52 the zero-
temperature energy excessdE decreases withr as
01710
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dE;r x1, ~7!

where x150.50(5) @13#. Similarly, we expect thatx also
increases as a power ofr,

x;r 2x2. ~8!

Inverting Eq.~8! and using Eq.~5! we obtainr; l 2d/x2 and
from Eq. ~7! we havedE; l 2dx1 /x2. Finally, comparing the
last relation with Eq.~4! we obtain

Q5d~12x1 /x2!. ~9!

To estimateQ we performed Monte Carlo simulations o
model ~1! for k52 and using a Metropolis algorithm@16#
with random update. Simulations were made for the sys
size up toL570 and we have checked that this is sufficie
to obtain basically size independent results. For each coo
rate r we made around 100 independent runs which w
used to calculatedE andx. The starting temperature wasT
52.8, which for k52 is above the critical temperature
which in this case isTc;2.35 @10#.

The results of our simulations are shown in Fig. 1. T
relatively good linearity of our data confirm the power-la
behavior ~7! and ~8!. From these data we estimatex1
50.50(5),x250.90(5), and using Eq. ~9! we obtain Q
51.33(20). Such an estimate ofQ shows that neither Eq
~2!, which corresponds toQ52, nor Eq.~3!, which corre-
sponds toQ51, is correct. Instead, we have an intermedia
possibility with a noninteger value ofQ. ~Marginally, our
estimation can be consistent withQ51.! Let us note that
since Q,2 the surface tension of domain walls vanish
@17#.

For comparison, in Fig. 1 we also present results of
simulations for the two-dimensional~square lattice! version
of model ~1! with k52 ~in this caseTc50). Simulations
were performed for system sizes up toL51000. From these
data we estimatex150.46(5), x250.95(5), and thus Q
51.05(10). It is likely that in this caseQ51, which would
indicate the trivial nature of domain walls with energy pr
portional to their perimeter, the typical two-dimension
Ising model behavior.

Although for k52 model ~1! has slow low-temperature
dynamics, it does not display a genuine glassy transition.

FIG. 1. The excess energydE (1, d53, andn, d52), and
x21 (!, d53, and3, d52) as a function of the cooling rater.
3-2
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BRIEF REPORTS PHYSICAL REVIEW E 65 017103
we already noted, to model glassy transitions one sho
really study the case ofk50. However, in this case th
above method encounters some difficulties since the dom
of random quench are not only of ferromagnetic type as
the case ofk52, but also antiferromagnetic and even
some mixed types~see@10# for some discussion!. For k50
Eq. ~5! cannot be used and thus the exponentQ cannot be
determined using the above method.

To get some insight into thek50 case we instead looke
at the distribution of unsatisfied plaquettes@18# in the glassy
phase~i.e., plaquettes contributing energy above the grou
state!. The random high-temperature sample was slow
cooled down to zero temperature. Then for the final confi
ration we located unsatisfied plaquettes, and their spatial
tribution is shown in Fig. 2. For comparison we also pres
similar calculations for thek52 case. One can see that
both cases energy is concentrated in linear segments. Fk
52 this is in agreement with our estimationQ,2 as for
Q52 energy would be localized on two-dimensional s
faces. Although fork50 we cannot estimateQ, the linear
stuctures in Fig. 2 strongly suggests that in this case
Q,2 and the glassy phase is composed of tensionless
main walls.

Of course, the glassy phase obtained by finite-rate coo
contains some regions other than linear segments where
ergy is concentrated. However, we expect that such s
will diminish for decreasing cooling rater. To confirm our

FIG. 2. The distribution of unsatisfied plaquettes in the ze
temperature glassy phase. Simulations were made for the sy
sizeL5100. ~Only a portion of the system is shown.! Let us note
that although the cooling for thek52 case is faster it seems t
create larger domains. It was already suggested that for the cak
50 the model should order much more slowly than fork52 @10#.
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expectations we measured the ratiop of unsatisfied
plaquettes that belong to linear segments compared to
total number of unsatisfied plaquettes@19#. The results, pre-
sented in Fig. 3, show thatp indeed increases for decreasin
r. It is also possible that in the limitr→0 the fractionp
→1. Let us note that the glassy state obtained in such a l
constitutes an ideal glass@20# and the present results migh
shed some light on this, so far hypothetical, state of mat
In particular, they suggest that in the ideal glass slow cool
removes energy-rich spots and leaves only low-ene
excitations.

In conclusion, we studied the glassy phase of the gon
dric model. Our results show that the energy of excitations
this phase scales asl Q with Q,d21. This confirms earlier
expectations that domain walls in this model are tensionle
Since thek50 case seems to have a number of proper
typical of ordinary glasses, it would be desirable to che
whether this result also has some analogy in real system
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FIG. 3. The fractionp of unsatisfied plaquettes that are locat
in linear segments as a function of the cooling rater for k50
(1) andk52 (3).
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